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Abstract Previously, direckd animals on square and hiangular lattices have been enumerated 
by area, and have teen found to have simple generating functions, whilst the hexagonal lattice 
genernting function has nat~been obtained. In this paper, directed animals on several new 
lattice are enumerated, one class of which is solved exactly. Directed animals by bonds (with 
and without loops) are also enumerated. In each case an asymptotic growth like n-lnp" is 
observed and precise estimates for p are given. 

1. Introduction 

A directed lattice animal A is a set of points .on a lattice such that all points p, E A are 
either the'(unique) oiigin point or one oattice) step in one of the preferred directions from 
some other point in' A. This means that they start at a given -origin, ind then move out in 
some preferr-ed directions. Directed animals have relevance to percolation. 

Directed animals in two dimensions have been extensively studied [1,2] on ships of 
finite width, and have been solved for the square and trEkgular lattice empirically by Dhar 
er al [3]. They have been shown to be equivalent to~the Baxter hard-square problem by 
Dhar [4], a result subsequently proved for the square lattice by Gouyou-Beauchamps and 
Viennot 151 through a bijection to onedimensional walks, and later by Bbtrbma and Penaud 
[6]'through a bijection to asymmetric trees. The triangular case  has^ also been solved by 
Viennot [7]. A more general summary is provided in [8] and 191. 

We have followed Dhar et al [3] by enumerating (by computer) the number of animals 
of a particular lattice topology, and have then analysed this~series using differential [IO] 
and algebraic approximants [ll]. 

In particular, the search was driven by the the fact that square and triangular site-directed 
animals had a very simple algebraic generating function, whereas hexagonal site-directed 
animals seemed to lack' this property, as pointed out by Dhar et al 131. 

It was shown by Dhar er al [3] that the hiangular, square and hexagonal site-directed 
series grew asymptotically~like n-1/2/1" where p is 4 for the triangular lattice, ji is 3 for 
the square lattice, and g is ,a  non-integer, 2.0252 f 0.0005 for hexagonal animals. 

We have extended the hexagonal site series from 48 terms to 99 terms without~finding 
an algebraic generating function. Since the square and triangular lattices were found with 
only a few terms, we conjecture that the hexagonal site-directed animal generating function 
is not algebraic. 

After this surprise, we attempted to find exact algebraic equations for some other lattices 
(some non-regular). The hexagonal lattice can be fitted onto a square lattice by leaving out 
some possible connections, producing a 'brickwork' effect. Other lattice types can be 
impressed upon the square laaice, some of which are not 'normal' lattices. An algebraic 
generating function was discovered for one set of these lattices. It will be described later. 

0305-4470/93/133085+07507.50 0 1993 IOP Publishing Ltd 3085 



3086 A R Conway et a1 

Also, only site-directed animals had previously been solved. ’ h o  other types of directed 
animals, bond-directed and bond-directed without loops, were also studied. For no such 
animals did we find algebraic generating functions. The difference between the three types 
of animals lies in the way they are counted. An example on the square lattice is the animal 
consisting of four sites arranged in a square. In site-directed animals, this represents one 
animal. For bond-directed animals, this represents three animals: two with three bonds (a 
U and a C shape), and one with four bonds (a full loop). For bonddirected (no loops) 
animals, the four-bond loop is not allowed, so the four occupied sites only represent the 
two animals with three bonds. 

It is clear that there are at least as many animals counted by bonds as there are with 
bonds (no loops), and there are at least as many counted by bonds (no loops) as by sites. 
Accordingly, we expect p(site) < p(bond, no loops) 6 p(bond). Empirically, we find that 
strict inequality holds for the nine lattices considered here. 

The family of lattices studied is shown in figure 1. 

2. Enumeration method 

Direct enumeration was not practical, due to the large size of the numbers produced. 
Instead, a method similar to that described by Dhar et a1 [3] involving a transfer-matrix- 
type approach across a diagonal perpendicular to the preferred direction, and making use of 
mirror symmetries where possible, was developed. 

In particular, a computer program was produced which worked on a matrix with a given 
number of states. Each state represented a different variety of site. For instance, in the 
square lattice, all sites are identical, so there is only one state. In the hexagonal lattice, 
there are two types of sites: those that can move horizontally; and those that cannot. Thus 
there are two states for the hexagonal lattice. 

The boundary conditions on one diagonal can be expressed as a linear combination of 
the boundary conditions on the diagonal one unit outwards, after adding a few elements. 
By storing previously calculated boundary conditions, these can be calculated efficiently. 

Note that animals on lattices which include diagonal bonds take longer to enumerate as 
the size of the boundary is twice as large, and the complexity grows exponentially with the 
boundary size. 

3. Results 

A picture of the lattices is given in figure 1. The preferred direction is up and to the right. 
The series coefficients for lattices with more than one state will depend upon which state 
is chosen as the initial state, but it is believed that this will not affect the existence or 
otherwise of an algebraic generating function. In all the instances below, there has been a 
‘natural’ starting state, from which the series has been started. This is the lower-leftmost 
cell in figure 1. 

Three types of animal on nine lattices gave 27 series in all. To save space we do not 
give the coefficients (in excess of 1000). Instead we give two series, the 99-term hexagonal 
site animal series (extending Dhar etal’s [3] enumeration) in table 1, and the square-lattice 
bond series in table 2. Other series are available on request from the fmt named author 
(email address: arc@mundoemaths.mu.oz.au). 
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triangular hexagonal 

, 

swngehexag0na.l strange octagonal strange decagonal 

Figure 1. Picture of the nine lattice topologies used 

The analysis consisted of first searching for an exact algebraic equation [l l]  and, failing 
that, analysing the series by differential approximants. This method of analysis is now quite 
standard, and is described in detail in [lo]. 

In table 3 we give a summary of all the results. For each lattice, and for each of 
the three animal types, we indicate whether it has been solved exactly (for an algebraic 
generating function), how many terms have been enumerated, and the values of p obtained 
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Tdble 1. Number of animals on the hexagonal lattice. 

n Animals withn sites n Animals with n sites 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

18 
19 
20 
21' 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

17 

I 51 
2 ;52 
3 53 
6 54 

11 55 
21 56 
40 57 

149 59 
289 ~ 60 
563 61 

1099 ~ 62 
2152 63 
4222 ~ 64 
8299 65 

16339 66 
32217 67 
63612 68 

125753 69 
248870 70 
493015 71 
977576 72 

1940042 73 
3853117 74 
7658211 75 

15231219 76 
30312012 77 
60360046 ~ 78 

120260317 79 

n 58 

239727623 ~ = 80 
478105086 ~~ 81 
953950878 82 

1904209707 83 
3802587910 84 
7596437240 85 

15180921041 86 
30348394 157 87 
60689739010 88 

121403119626' 89 
242925445980 90 
486226668328 91 
973467761968 92 

1949468395563 ~ 93 
3904970715501 94 
7823872468948 95 

15679198951587 96 
31428242462299 , 97 
63009591480990 ~ 98 

. 126351391028540 99 
50 253417639018096 ,. 

508363015 172300 
1019972273445851 
2046808822092474 
4108071760820439 
8246469 606486 634 

16556365 592922 836 
33245 018757 500920 
66765272438643476 

134 101 946854407712 
269 387 847 045 971 641 
541 224581478870387 

1087506471 314584006 
2 185442 159688419 859 
4 392 363 747 731 461 439 
8 828 913289 559275069 

17748624493 635942 975 
35683647167071 197039 
7 1 749 603 806 980 992 331 

144282686583 360 756484 
290 169750747404964486 
583 622 555 534 978 042 575 

1173958850272328761795 
2361 63872400250857.5304 
4751303560113863487747 
9 559 822201 935585592685 

19236391 212494063 209234 
38710894 000785915 368 960 
77 907 221 754 039 272464 621 

156 803691 779869 398257751 
315622580238164271 794136 
635 348868528451 823794284 

1279 051 682652368025780955 
2575 104252227 354 120046444 
5 184796405 275057586642 065 

10439 941 640542574227 809800 
21 022929 514845448 173 524974 
42336 655 543678468 248662 824 
85264329601 783 920697 896 605 

171 729588 933 981 640 090771 504 

696 753 306 957 994 580 743 546 710 
1403570 007 674326 674 058091 786 
2 827 512 796 439 879 767 639 057 858 
5696625485781 401 013 945751 403 

11 477 444 474359 960 449 567 396 803 
23 125754216512540984858 689 608 
46598218 546799030718727870 893 
93899865 311 126 117655075 154741 

189 226 706 028 309 538 198 211 370 984 

345898 919606375679391312408 

from differential approximant analysis. In all cases the coefficients were found to grow like 
jArl/*, so that it seems that bond animals, site animals and loopless bond animals are all 
in the same universality class. 
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Table 2. Number of bond animals on the square lattice. 

3089 

1 
2 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1 
2 
5 

14 
42 

,130 
412 

1326 
4318 

14 188 
46 950 

156 258 
522 523 

1354254 
5909419 

19964450 
67618388 

229 526 054 
780633 253 

2 659600 616 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

. .’ 39 
40 

Animals with n bonds 

9075 301 990 
3 1 0 10 850 632 

106100239080 
363 428 599 306 

1246 172974048 
4277163883744 

14693260749888 
50516757 992258 

173 812617499767 
598455761 148888 

2061 895016795926 
7108299669877836 

24~519543 126693604 
84 623 480 620 967 174 

292204621 065844292 
1009457489428 859322 
3 488 847073 597306764 

12063072 821 044567 580 
~41725940730 851 479 532 
144 383 424404966638976 

Note that many other iattices were tried, but were generally uninteresting. 

4. Strange lattices 

The ‘strange’ lattices were invented because of their resemblance to the hexagonal lattice. 
The main reason for our interest in them is that they were found to be solvable (for an 
algebraic generating function) in the site case, whereas no other lattices hied were solvable 
(other than those reducible to previously solved cases). 

Their generating function f ( x )  was found to satisfy the equation 

,1 - x N  
- x +  ( x - -  ~ 3x+1 

1-x 

where N is the’number of ‘gaps’ in the ladce unit cell. That is, for the square lattice, 
N = 0, for the strange hexagonal lattice N = 1, for the strange octagonal lattice, N = 2, 
etc. This formula has been tested up to N = 4. Note that this formula was empirically 
determined by fitting the exact enumeration series to algebraic approximanti 1111, and has 
not been proved. 

This formula h q  two obvious limits. First, when N = 0, the normal square lattice 
generating function -x + (-3x + l)(f + f’) = 0 is recovered, and second as N 
approaches infinity, a solution of the form f.= x/(l  - 2n) falls out, which is the generating 
function for animals on infinite vertical strips held together by one horizontal line. It is 
straightforw&d to prove that this generating function is correct, as the problem decouples 
into the vertical bars (U = 1/(1 -x) each), which with horizontal bonds added gives 

An unsuccessful but still interesting attempt Was made  to^ prove this formula using the 
method of B6tr6ma aqd Penaud [61. This method constructs an algebraic language which 

f = xu/(l -xu) =~x/(l-”). 
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Table 3. Summary of results for the 21 models shldied. 

Lattice %e Solved Terms Connective constant 

square site Yes 30 3 
bond no 40 3.501695 & 10 
noloops no 40 3,3808341 12 

19 4 
no 5.6828 & 2 

5.3464 f 3 
yes 20 

Triangular site 
bond 
noloops no 20 

Hexagonal site U0 99 2.025131 f 5  
bond no 80 2.177851 & 5 
noloops no 80 2.12853 f 3 

Kagom6 site no 31 2.7010 f 3 
bond 00 31 3.4274 f 2 
no loops no 31 3.26605 f 10 

Dipentagonal site U0 37 281160 f 2 
bond no 35 3.07806 f 10 
noloops no 35 3.0084 f 1 

Octagons site no 123 1.91832&5 
andsquares bond "0 100 2.108595 f 5 

no loops no 100 2.04194 f 5 

Strange site Yes 42 2.6180339 ... =:Of&) 
hexagonal bond no 40 2.1565 f 1 

noloops no 40 2.71814f3 

Strange site yes 40 2.4142136.. . = 1 + 4 
octagonal bond no 40 2.46781 f 5  

no Imps no 40 2.45203 f 7 

Strange site yes 30 2.28879499.. . 
decagonal ~ bond no 30 2.31286 f 5 

no lwps no 30 2.30553 f 6 

generates a class of asymmetric trees. BCtrt5ma and Penaud [6] then proved that a bijection 
exists between this set of trees and the duected lattice animals. Thus enumerating the 
asymmetric trees is equivalent to enumerating the duected animals. We have extended their 
grammar for the strange hexagonal lattice: 

G = E  + r  + a G  +raG f b b G  + x M y y G  

M = E + r E  

E = S f S a M  

S = ~ + a S b b S + a S x M y y S .  

These equations generate a (different) class of asymmetric trees. In particular, G generates 
this class of trees. The other variables generate subsidiary geometrical objects. If the tree 
is oriented vertically, then E generates guingois trees: trees that never go to the right of the 
root. S are trees that never go right of the root, and which return to a site directly below the 
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root. M arc guingois trees that may have a dead right bond. Here r means a ‘dead’ right 
bond (only going half way), bb means a ‘full’ right bond, a means a “left” bond, and the 
xyy set means a full left and right bond. G is the starting state. The details of the reason 
for such an approach, and the methods for manipulating it are given in [6] which should be 
read to Understand the above gr&x and its motivation. 

From the equations of the grammar one obtains the generating function by converting 
these to algebraic equations, and converting all lower case symbols to x ,  and E to 1. Then 
xG(x )  = f ( x ) .  The factor of x is due to the~fact that we count the root site as a site; [6] 
does not. Although solving this grammar gives the strange lattice generating function, we 
have not been able to find a bijection between the class of trees generated by the language 
and the directed animals. 

Note that this grammar can easily be modified for other vdu& of N as follows. Change 
the bb to N + 1 instances of b, change the yy to N + 1 instances of y. and change the r 
to r + r2 +. r3 + . . . r N .  If N = 0, the grammar of B6tr6ma and~Penaud [6] results. We 
conjecture chat a simple bijection between these trees and the animals exists, but have yet 
to find it. 
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